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graphite monochromator  and w/20 scan mode in the 
range 1--0-< 25 °. Table 2 gives the figures of merit 
of the best sets for all three methods; that of 
MAGEX89 gave an E map showing 22 atoms and 
is reproduced in Fig. 1. Fourier calculations revealed 
the remaining atoms and least-squares refinement 
gave a final residual of 0.055 for the observed 
reflexions. 

Discussion 

It will be seen from Table 1 that for the trial structures 
the MAGEX89 method performed somewhat better 
than the other two and the computer resources used 
by MAGEX89 were 9% less than those of RANTAN. 
Not too much should be made of that since by modify- 
ing parameters all three methods are probably capable 
of solving all the structures. What we do say is that 
it is worthwhile having MAGEX89 available. While 
any individual method may not succeed for a par- 
ticular structure, the probability of failure is far lower 
with many methods available. 

The version of MAGEX89 we have used has been 
programmed for a P D P l l / 4 4  but should be able to 

run on most standard personal computers. It can 
handle all 230 space groups in the standard orienta- 
tions, including alternative settings, as given in Inter- 
national Tables for Crystallography (1987). 

We are most grateful to the National Natural 
Science Foundation of China for its support of this 
project and to Professor M. M. Woolfson for advice 
and help with the preparation of this manuscript. 
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Abstract 

The study of families of protein structures is impor- 
tant in analysing the results of NMR structure deter- 
minations and in investigating mechanisms of 
molecular evolution at the level of conformation. A 
method is discussed for finding the transformations 
that mutually superpose an arbitrary number of struc- 
tures in the least-squares sense given specified atom- 
to-atom correspondence. 

0108-7673 / 92/010011-04503.00 

I. Introduction 

Superposition has become an important tool for com- 
paring protein structures and for deriving an 'average' 
structure from a family of conformations of a protein. 
The problem arises regularly in the determination of 
the three-dimensional structure of a protein in sol- 
ution using nuclear magnetic resonance, which typi- 
cally produces an ensemble of conformations 
(Wuethrich, 1986). Sets of interproton distances 
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12 MULTIPLE SUPERPOSITION OF STRUCTURES 

obtained from measuring cross relaxation between 
nuclei less than 5 2~ apart can be converted into a 3D 
structure by several methods, but all suffer from 
underdetermination as the number of observable dis- 
tances is far smaller than the number of degrees of 
freedom. As a result, a family of structures, all con- 
sistent with experimental data, is produced (Kaptein, 
Zuiderweg, Scheek, Boelens & van Gunsteren, 1985; 
Clore, Gronenborn, Bruenger & Karplus, 1985; 
Havel, Kuntz & Crippen, 1983; Braun & Gr ,  1985; 
Bassolino et al., 1988; Nilges, Clore & Gronenborn, 
1988). 

Given a family of conformations, a method to 
measure their similarity and dispersion is necessary. 
Techniques in common use rely on calculations of 
minimal root-mean-square deviations of atomic posi- 
tions to achieve optimal superposition. For a pair of 
structures, techniques for finding the global minimum 
root-mean-square deviation in atomic position, with 
respect to rigid-body relative motions, are known (von 
Neumann, 1937; Kabsch, 1976, 1978; Golub & Van 
Loan, 1983). However, for more than two structures, 
most methods so far described involve combinations 
of pairwise superpositions. In practice, NMR spec- 
troscopists usually either (a) calculate an average 
structure and then superpose all the structures on it 
or (b) superpose all the structures on one member of 
the family chosen as a reference. 

Three previous reports address directly the problem 
of multiple structural superposition (Gerber & Mill- 
ler, 1987; Sutcliffe, Haneef, Carney & Blundell, 1987; 
Kearsley, 1990). These methods provide solutions of 
multiple superposition problems in many practical 
cases, especially if the structures are quite similar. 
However, it is of interest to note that another general 
solution, free of simplifying assumptions and heuris- 
tic devices, exists. This is discussed in § 2. 

2. Problem formulation and iterative procedures 

In this paper we discuss an optimization problem of 
simultaneous rotation of M rigid molecules to 
maximal similarity. That is, let (Xik) be a set of 3 x 1 
vectors such that for every k -- 1 , . . . ,  M the set (X~k), 
i ---- 1 , . . . ,  N, represents atomic coordinates of a given 
molecule. Following Gerber & Miiller (1987) we take 
the following criterion for a match (similarity) 
between rotated molecules: 

M N 

E =  r, Vk, E W,]ITkX,k--%X,,H 2, (1) 
k < l  i = 1  

where T ~ , . . . ,  TM are rotation (orthogonal) matrices 
and l)kl and wi are given positive weights. (Here 
IIxll 2= x'x denotes the squared length of a vector x 
and x' stands for the transpose of x.) An optimal 
similarity is achieved by minimization of the criterion 
E as function of the orthogonal matrices T , , . . . ,  TM. 

It will be convenient to formulate the obtained 
optimization problem in a matrix form. Consider 
3x N data matrices Xk=(Xlk, . . . ,XNk) ,  k-- 
l , . . . ,  M, the N x N diagonal matrix W -- diag (wi) 
and the 3 × 3 matrices Skt = l.)kiXkWXPl, k,  l = 1 , . . . ,  M. 
Then 

M 

E =  ~, vk, t r ( T k X g - T ; X , ) W ( T k X k - T , X , ) '  
k < l  

M 

= - 2  ~ trTkSk;Tl 
k < l  

+ a sum independent of Tj. 

Consequently, the problem of minimization of E is 
equivalent to maximization of 

M 

G = X tr TkSktT'  I. (2) 
k<; 

For M = 2 this optimization problem has a closed- 
form solution. Namely, one has to choose T1 and T 2 
in such a way that the matrix TIS12T~ is diagonal and 
positive semidefinite. That is, TI and T~ are formed 
by orthonormal eigenvectors of the matrices S~2S'12 
and S'12S 12, respectively. This result has a long history. 
It was derived by von Neumann (1937) and has been 
rediscovered many times since. Notice that the 
optimal solution is not unique. We can always pre- 
multiply T1 and T2 by an orthogonal matrix without 
changing the trace of T,S,2T~. In particular, we can 
replace TIS12T~ by T~T~SI2. The orthogonal matrix 
T--T~T1 is then optimal if and only if TS12 is sym- 
metric and positive semidefinite (cf Ten Berge, 1977). 

For M - 3  a closed-form solution is not available 
and an iterative procedure is required. A simple and 
surprisingly efficient algorithm was proposed by Ten 
Berge (1977). The idea is to maximize G with respect 
to one orthogonal matrix at a time keeping other 
orthogonal matrices fixed. That is, let matrices 
T2,. • . ,  TM be fixed and consider G as a function of 
T1 alone, 

G = tr TISI.+ a sum independent of T~, 

where 

Sk. = E SkIT'l, k = 1 , . . . ,  M. 

We can now maximize G with respect to T1 by the 
diagonalization procedure and similarly for T2 etc. 

Ten Berge's algorithm can be described as follows. 
Choose initial values of the matrices Tk, k = 1 , . . . ,  M. 
Usually these initial values are taken to be the identity 
matrices. Maximize G with respect to T1 and sub- 
stitute the obtained optimal value. Do the same, in 
turn, for T 2 , . . . ,  TM. Repeat the procedure until the 
increment in G becomes less than a prescribed pre- 
cision given by a positive number e, say e -- 10 -4. 
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Ten Berge's algorithm converges to a stationary 
point where all matrices Sk., k = 1 , . . . ,  M, are sym- 
metric and positive semidefinite. This is a necessary 
condition for optimality. Unfortunately, this 
necessary condition may be not sufficient (see Ten 
Berge, 1977, p. 270). Therefore a dual procedure was 
proposed by Shapiro & Botha (1988) in order to verify 
optimality of an obtained stationary point. Let 

s ( z )  = 

I Z1 Sl2 . . .  S ~ ]  

S21 Z2 . . .  S!~ 

. . .  

. . .  

be a 3M x 3 M  symmetric matrix considered as a 
function of the symmetric block-diagonal matrix Z = 
d i a g ( Z 1 , . . , Z M ) .  Denote by A~(Z)---...-->A3M(Z) 
the eigenvalues of S(Z). Then for every Z the number 

f(Z)=½ [M ~ (3) 

gives an upper bound for the maximum of G (Shapiro 
& Botha, 1988, theorem 1). By minimizing f (Z)  over 
all block-diagonal matrices, one obtains the corre- 
sponding least upper bound. It can be shown that 
this least upper bound is equal to the maximum of 
G if A 3 ( Z 0 ) ~ ; ~  A 4 ( Z o )  , where Z0 is the minimizer of 
f ( z ) .  

It was found by Shapiro & Botha (1988) that a very 
good starting value for minimization of f (Z)  is con- 
structed as follows. Let PklDklQ'kt be singular-value 
decompositions of the matrices Skz, i.e. Dkt are 
diagonal and positive semidefinite and Pkl and Qkt 
are orthogonal. Then take 

M 

Zk * = -  E Pk/Dk, P~,, (4) 
l = 1  
I ~ k  

k =  1 , . . ,  M and Z * = d i a g  ( Z * , . . . , Z * ) .  

It was found that for this value of Z the corresponding 
upper bound f(Z*) was usually very close to the 
maximum value of G produced by Ten Berge's 
algorithm. Therefore, for practical purposes, it was 
usually sufficient to evaluate the upper bound f(Z*) 
in order to confirm optimality of the calculated 
stationary point. 

It may happen that some of the optimal orthogonal 
matrices calculated by Ten Berge's algorithm have 
negative determinant (equal to -1) .  This will be the 
case if the determinant of the corresponding matrices 
Sk. = ~ k  Sk~ is negative. Then the obtained optimal 
solution suggests reflections as well as rotations of 
the considered structures. Although such a situation 
is unlikely to happen in practice, it is possible from 
the theoretical point of view. In the remainder of this 
section we briefly discuss how to deal with this case. 

Let us study first the case of M = 2 .  Again, in 
this case the problem has a closed-form solution. 
That is, consider the matrix $12 and suppose that 
det $12 < 0. Let T1 and "r2 be orthogonal matrices such 
that the matrix S*2='rIS12T~ is diagonal, S'2 = 
diag(d~, d2, d3) ,  and positive semidefinite. Since 
det $12 < 0, we have here that the determinants of'F~ 
and "F2 have different signs, sa_y det "r~ = 1 and det T2 = 
-1 .  We can choose matrices T~ and "r2 in such a way 
that the diagonal elements of S'2 are arranged in 
decreasing order, i.e. dl >- d2 >- d3. 

We have to find rotation matrices T1 and T2 such 
that the trace of T~S~2T~ is maximized. It is claimed 
then that the optimal rotation matrices are given by 
the matrices T1 and DT2, where D is the diagonal 
matrix with diagonal elements 1, 1 and -1 ,  i.e. D = 
diag (1, 1 , -1 ) .  That is, the maximum of the trace of 
T~S~2T~, subject to T1 and T2 being orthogonal and 
det TI = det T2 = 1, is given by d~ + d2 - d3 .  

Indeed, consider a 3 × 3 orthogonal matrix T with 
det T = - 1 .  Such a matrix can be represented in the 
form T = QAQ',  where Q is an orthogonal matrix and 
A is a block-diagonal matrix with the first block given 
by a 2 x 2 rotation matrix B and the second block 
consisting of the element -1  (e.g. Curtis, 1979). We 
have then 

t ~ t tr S~*2T = tr Q'S ~*2QA = tr Q ,S,2Q, B - q3 S 12q3, 

where q~, q2 and q3 are column vectors of the matrix 
Q and Q~ is the 3 x 2 matrix formed by the first two 
columns of Q, i.e. Ql=[q l , q2 ] .  Since Q'IS1*2Q1 is 
symmetric and positive semidefinite, we know that 
the maximum of tr Q'~S*2Q1B is attained when B is 
the identity matrix. Also by Ky Fan's inequality (Ky 
Fan, 1949) we have tr Q1S12Qi is less than or equal 
to the sum of the two largest eigenvalues of S'2, that 
is d~+d2 Similarly, ' * > • q3S12q3-d3. All this implies 

tr T 1 S l 2 T ~  = tr S 1"2T- < d l+  d2 - d3 

where 

T _ _  - -  l - - !  -T2T2T~T~ and d e t T = - l .  

For M->3 an obvious analogue of Ten Berge's 
iterative algorithm can then be derived. Unfortu- 
nately, it appears that in the case of negative deter- 
minants the Shapiro-Botha upper-bound procedure 
cannot be applied for verification of optimality of the 
calculated solution. 

3. Numerical experimentation 

Ten Berge's algorithm together with the Shapiro- 
Botha dual procedure was applied to five representa- 
tive sets of coordinates of the protein molecule acyl 
phosphatase in an attempt to superpose them 
optimally. For each representative set there are 392 
triples of coordinates that represent the positions of 
the 392 atoms that make up the whole structure. Only 
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the unweighted optimization problem was con- 
sidered; that is, minimization of E in (1) with respect 
to T I , . . . , T M ,  with V k t = l ( l < - k < l < - M )  and wi = 
1(1_< i<- N). 

First the representative sets were translated so that 
the centres of all lie at the origin. Hence for each set 
Xk = (Xlg, . . . ,  XNk), 1 <-- k < -- M,  ~,i~l Xik =0. Then the 
maximal value (denoted by Go) of the function G in 
(2) was obtained by means of the Ten Berge 
algorithm. Recall that the maximum of G corresponds 
to the minimum of the criterion E given in (1). 

Note that this algorithm differs from algorithm 1 
proposed by Sutcliffe et al. (1987, p. 378), which 
incidentally is identical to an algorithm proposed 
earlier by Kristof & Wingersky (1971). Both the Ten 
Berge and Kristof-Wingersky algorithms yield upon 
convergence stationary points which satisfy some 
necessary conditions for the optimality of G. 
However, as was indicated by Ten Berge (1977, 
pp. 270-272), the necessary condition satisfied by a 
stationary point obtained from the Ten Berge 
algorithm is stronger than that of Kristof & Win- 
gersky. 

The value of Go, which was obtained in two iter- 
ations, is 605 606.0. This turned out to be very close 
to the optimal value of G. Evaluation of the upper 
bound f (Z*)  of (3, with f and Z* defined as in (3) 
and (4) respectively, yields the value 605 607.0. 

The program used for the above calculation also 
provides for an attempted minimization of the upper 
bound f (Z )  of G by means of a Newton-like 
differentiation method. It uses Z* as defined in (4) 
as starting value. However, this is not always possible, 
since the function f is convex, but not everywhere 
differentiable. In fact, it is differentiable at a poi.nt 
Z = diag ( Z 1 , . . . ,  ZM) if and only if A3(Z ) # A4(Z) 
[see Shapiro & Botha (1988) for a more detailed 
discussion of the properties of f and the relevant 
minimization technique]. 

In this particular case f ( Z )  was minimized success- 
fully. The difference A3(Z)-An(Z) was sufficiently 
large throughout the minimization process with 
I / ~ 4 ( Z ) / A 3 ( Z ) [ ~  10 2 (the eigenvalues were all nega- 
tive). This means that f ( Z )  was differentiable at each 
step and that the stationary point is a global 
minimizer, since f ( Z )  is convex. Furthermore, the 

minimal value of f turned out to be equal to Go, 
which implies that the Ten Berge algorithm converged 
to the optimal solution. Hence, in this case the 
orthogonal matrices obtained from the Ten Berge 
algorithm optimally superpose the original five rep- 
resentative sets of coordinates. Also, it was found 
that these orthogonal matrices are all rotation 
matrices. 

Finally, note that in this case the upper bound 
f(Z*)  is very close to the optimal value of both f and 
G. This was also borne out by other experiments. 
This may therefore be a good way to check the per- 
formance of the Ten Berge algorithm, especially 
if one does not want to go through the process of 
minimizing f. 

AML thanks the Kay Kendall Foundation for gen- 
erous support. 
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